A Simple Locking-Alleviated 4-Node Mixed-Collocation Finite Element with Over-Integration, for Homogeneous or Functionally-Graded or Thick-Section Laminated Composite Beams

نویسندگان

  • Leiting Dong
  • Ahmed S. El-Gizawy
  • Khalid A. Juhany
  • Satya N. Atluri
چکیده

In this study, a simple 4-node locking-alleviated mixed finite element (denoted as CEQ4) is developed, for the modeling of homogeneous or functionally graded or laminated thick-section composite beam structures, without using higher-order (in the thickness direction) or layer-wise zig-zag theories of composite laminates which are widely popularized in current literature. Following the work of [Dong and Atluri (2011)], the present element independently assumes a 5-parameter linearly-varying Cartesian strain field. The independently assumed Cartesian strains are related to the Cartesian strains derived from mesh-based Cartesian displacement interpolations, by exactly enforcing 5 pre-defined constraints at 5 pre-selected collocation points. The constraints are rationally defined to capture the basic kinematics of the 4-node element, and to accurately model each deformation mode of tension, bending, and shear. A 2 by 2 Gauss quadrature is used when each element is used to model a piece of a homogeneous material or structure, but over-integration (using a higher-order Gauss Quadrature, a layer-wise Gauss Quadrature, or a simple Trapezoidal Rule in the thickness direction) is necessary if functionally-graded materials or thick-section laminated composite structures are considered. Through several numerical examples, it is clearly shown that the present CEQ4 is much more accurate than the well-known Pian-Sumihara (1984) element as well as the primal four-node element, for the modeling of homogeneous beams. For functionally-graded materials, the presently-developed element can accurately capture the stress distribution even when very few elements are used; but the Pian-Sumihara element fails, because the assumption of linearly-varying stressfield is generally invalid unless a very fine mesh is used in the thickness direction. 1 Department of Engineering Mechanics, Hohai University, China. 2 King Abdulaziz University, Jeddah, Saudi Arabia. 3 Center for Aerospace Research & Education, University of California, Irvine, Distinguished Adjunct Professor, KAU, Saudi Arabia. 50 Copyright © 2014 Tech Science Press CMC, vol.40, no.1, pp.49-77, 2014 For thick-section laminated composite beams, reasonably accurate solutions (for axial as well as transverse stresses) are obtained even when only one CEQ4 element is used in the thickness direction. Without using higher-order theories or layer-wise zig-zag assumptions for displacement or stress fields in the thickness direction, for thick-section laminates, the present method can accurately compute the jumps in axial stresses at the interfaces of layers. Extension of the present CEQ4 concept to C0 elements of higher-order, for plates and shells as well as for multi-physics will be pursued in future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Locking-Alleviated 3D 8-Node Mixed-Collocation C0 Finite Element with Over-Integration, for Functionally-Graded and Laminated Thick-Section Plates and Shells, with & without Z-Pins

Following previous work of [Dong, El-Gizawy, Juhany, Atluri (2014)], a simple locking-alleviated 3D 8-node mixed-collocation C0 finite element (denoted as CEH8) is developed in this study, for the modeling of functionally-graded or laminated thick-section composite plates and shells, without using higher-order or layer-wise zig-zag plate and shell theories which are widely popularized in the cu...

متن کامل

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, a...

متن کامل

Geometrically nonlinear analysis of axially functionally graded beams by using finite element method

The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014